BK BIRLA CENTRE FOR EDUCATION

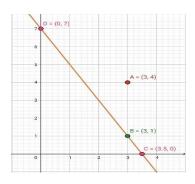
SARALA BIRLA GROUP OF SCHOOLS SENIOR SECONDARY CO-ED DAY CUM BOYS' RESIDENTIAL SCHOOL

PERIODIC TEST-2 (2025)

MATHEMATICS MARKING SCHEME

Class	: IX		Duration: 1 Hr
Date	: 04-11-2025		Max. Marks: 25
I.	MCQ (1 mark each)		
	$a \neq 0, b \neq 0$	(D)	
2.	•	(B)	
3.	None of these	(D)	
4.	40 °	(B)	
5.	Trapezium	(C)	
6.	-5x + 3y - 10 = 0, a = -5, b= 3 and		1/2
	3x + 0y + 2 = 0, $a = 3$, $b = 0$ and		1/2
	2x + 7y + 0 = 0, a = 2, b= 7 and		1/2
	5x + 0y + 6 = 0, $a = 5$, $b = 0$ and	c = 5	1/2
7	2 2 F = 0		
7.	3x - 2y + 5 = 0 3 (3 a + 1) - 2 (2 a - 1) = 0		1/2
	9a+3-4a+2 =		/2 1/ ₂
	5a =-5		⁷² ½
	∴ a = -1		½ ½
	· -		
8.	Given : ABCD be a parallelogram wit	th diagonal AC .	
	To Prove: $\triangle ABC \cong \triangle CDA$	D	′ C
	Proof : In ΔABC and ΔCDA:		3
	AB = DC (Opposite sides of p	parallelogram)	1/2
	AC = CA (Common side)		1/2
	∠ BAC = ∠ DCA Alternate	_	1/2
	ΔABC≅ΔCDA SAS Cong	gruence rule	1/2
Q	Let the angles be: $2x$, $5x$, $4x$, and $1x$	γ	1/2
).	$2x + 5x + 4x + x = 360^{\circ}$	Λ.	/2
	$x = 30^{\circ}$		1/2
	$\lambda = 30$		/2
	2x = 60 , $5x = 150$, $4x = 12$	20 $1x = 30^{0}$	1
10	. Let the cost of the pen = Rs x and the	nat of pen is Rs y	
	- -	-	
	x = 2y		1/2

x - 2y = 0


1/2

b) Find four different solution of the equation : x + 2y = 6For correct solution :

4 x ½

11. Draw the graph of the equation. 2x + y = 7

х	0	1	2
у	7	5	3

1 + 2

12. In $\triangle APD \cong \triangle CQB$

AD = BC	Opposite sides of a parallelogram are equal.	1/2
$\angle ADP = \angle CBQ$:	Alternate interior angle	1/2
DP = BQ:	Given.	
$\Delta APD \cong \Delta CQB$.	SAS congruence rule,	1/2
ii) AP = CQ	CPCT	1/2

iii) In $\triangle AQB \cong \triangle CPD$

AB = CD	Opposite sides .	
$\angle ABQ = \angle CDP$	Alternate interior angles	1/2
BQ = DP	Given.	
$\triangle AQB \cong \triangle CPD.$	SAS congruence rule,	1/2
(iv) AQ = CP	СРСТ	

13. ABCD is a parallelogram.

Hence, AE || FC AB = CDOpposite sides $\frac{1}{2}AB = \frac{1}{2}CD$ 1/2 AE = FC (E and F are mid-points of side AB and CD) Therefore, AECF is a parallelogram. 1/2 In ADQC, F is the mid-point of side DC and FP | | CQ 1/2 \therefore DP = PQ ----- (1) In ΔAPB, E is the mid-point of side AB and thus, EQ || AP 1/2 ∴ PQ = QB -----(2) 1/2 From equations (1) and (2), DP = PQ = BQ1/2

Hence, the line segments AF and EC trisect the diagonal BD.